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Abstract: Estimating the return-flow fractions of different consumptive water uses for the effective management of water resource allocation
and operation in a river basin is an essential issue. The purpose of this study was to estimate the return-flow fractions of domestic, industrial,
and agricultural water demands, as well as to determine the contributed inflow from the return flows into surface and groundwater resources.
This was done through the automatic calibration of a river basin software program, in conjunction with a genetic meta-search calibration
algorithm. In this study, the calibration of parameters was made possible by using the customization features of the model. Calibration was
done for three combinations of the objective functions. The results of the study demonstrated that the best and most logical results occurred in
the third condition, which was a calibration by the objective function, including the root-mean-square error (RMSE) of the river basin’s
outflow and the RMSE of the aquifer’s level. The fractions of the return flow from domestic, industrial, and agricultural demands in the
case study of the Shian Basin in western Iran, were obtained as 87, 76, and 18%, respectively.DOI: 10.1061/(ASCE)IR.1943-4774.0001033.
© 2016 American Society of Civil Engineers.
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Introduction

Return flow (RF) is defined as water that reaches a groundwater
or surface-water source after release from the point of use and thus
becomes available for further uses (Hayes and Horn 2009). One of
the most complicated problems in the modeling of a water resource
and demand system in a basin is the determination of the volume/
fraction of return flows. Return flows, or waters that have not been
consumed by various upstream users in a basin, are a source of
water for downstream users (Grafton and Hussey 2007; Qureshi et al.
2010) and have attracted marginal attention from managers and de-
cisionmakers (Simons et al. 2015). Fig. 1 shows the relation between
water withdrawal, water consumption, and return flows.

Some water resource planning studies have shown that the real
amount of return-flow fractions differs from the assumed fractions
(Gosian et al. 2005; Iran Ministry of Energy 2010). Water economy
studies have also divided used water into two parts, consumed and
return flow. The estimation of return flow is also important from
economic aspect/view (MacDonald et al. 2005). Return flows con-
tribute up to a few percent to the total value of water withdrawal
(Hoekstra et al. 2001) because they have indirect benefits (Schiffler
1998) and can have positive externalities that must be considered in
water economics (Taylor et al. 2014). The difference between water
withdrawal and return flow is known as water consumption, and
this plays an important role in the assessment of renewable water

resources (Talebi Hossein Abad et al. 2014). In aquifers with
overexploited water use, the proper estimation of the water
balance is based on the amount of return flow into the aquifers
(Pongkijvorasin and Roumasasset 2007).

The use of simulation models in the management of the alloca-
tion and utilization of water resources in a basin is a common issue
and the coefficients of return flows are among the main parameters
of these models that should be considered.

River basin simulation models, depending on the hydrological
processes that should be modeled, include various parameters.
For a confident use and estimation of the best value of the model
parameters, the models should be calibrated (MacLean 2009). The
calibration of a model may be treated as an optimization problem.
The objective function of the optimization model is to minimize
the differences between observed and estimated values (Fig. 2,
Moradkhani and Sorooshian 2008).

No comprehensive studies have been conducted based on the
calibration of return-flow fractions in which all coefficients are
estimated for an area or river basin, although a few studies exist
in the field of estimating return-flow fractions to surface water
or groundwater flow in a specific region and for a specific sector
(often agriculture) (Dewandel et al. 2008; Kim et al. 2009). Gosain
et al. (2005) computed 50% for irrigation return flow. One of the
early studies by Ilich (1993) assessed return flows from a water
resource management viewpoint. Tiddalik is a model that was de-
veloped by Hornbuckle et al. (2005) to study a range of manage-
ment options related to irrigation return flow. Various studies in the
fields of water resource management and river basin simulation
have shown that the need for coefficients has resulted in the use
of assumed values for return-flow fractions. Alimohammadi et al.
(2009) assumed that 10% of total water delivered for irrigation per-
colated into aquifers and 10% returned to the river. This implied
that the irrigation return-flow fraction is equal to 20% in a conjunc-
tive surface water and groundwater optimization model as a cyclic
storage system. Qureshi et al. (2010) assumed that 25% of irriga-
tion water withdrawal formed useful return flows in the Murray–
Darling Basin, Australia. Karimi and Ardakanian (2006) used a
25% coefficient for agricultural demand and 50% coefficient for
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domestic and industrial demand to develop a simulation model
based on finite elements and compared it with MODSIM. Liu et al.

)2010 ) concluded that the irrigation return-flow fraction was
approximately 25–30% in Taiwan. Karimi (2011) assumed co-
efficients of return flow of domestic, industrial, and agricultural
demand of, respectively, 60, 12, and 15% in order to compare
the mechanism of water allocation in MODSIM and WEAP (water
evaluation and planning model) software. A global estimation for
return-flow fractions was carried out by Gassert et al. (2013). In this
working paper, in the Aqueduct Global Risk Atlas of the World
Resources Institute, the term return-flow ratio was used to refer to
a catchment, a user, or a location.

It is obvious that many factors can influence the amount of
return water, as illustrated by Liu et al. (2010) and Qureshi et al.

)2010 ). The complexity of the connections and interactions be-
tween flows in a river basin, in terms of both location and time,
is one of the reasons for the lack of rigorous studies on the estima-
tion of return-flow fractions (Shiklomanov 2000). Also, from a
software design perspective, the calibration of river basin sim-
ulation models capable of considering return-flow coefficients
represents a challenging and time-consuming issue. The customi-
zation capability of MODSIM facilitates the calibration of these
parameters.

In this study, the return-flow coefficients/fractions for differ-
ent demand activities and the fraction of water that returns to sur-
face and groundwater sources are estimated by integrating the
MODSIM river basin simulation model and a genetic algorithm
(GA) (Goldberg 1989) in the Shian Basin in western Iran as a case
study. This was done by coding the GA algorithm into MODSIM,
so that the GA acts as a calibration engine forMODSIM to estimate
return-flow fractions.

Methods and Materials

MODSIM

MODSIM is a river basin simulation and decision support model
developed by Colorado State University in 1978 (Labadie 2010).
The purpose in developing this model was to introduce a powerful
tool capable of simulating physical operation and water allocation
in a river basin (Wurbs 1994). This model utilizes network flow
programming to optimize water allocation in each simulation time
step. The objective function of the flow network at each time step
is to minimize the cost of the flow network in order to optimally
allocate water among users. MODSIM simulates water allocation
mechanisms in a river basin through the sequential solution of a
network flow optimization problem for each time period. Fig. 3
shows a fully circulating network of user-defined and artificial
nodes and links (automatically created) in MODSIM. These artifi-
cial nodes and links are essential in insuring that mass balance
is satisfied throughout the network (Labadie 2010). One unique
feature of MODSIM is Visual Basic or C# coding, also known
as customization (Assata et al. 2008). Customization provides a
powerful environment inMODSIM for users to prepare customized
code in the Visual Basic.NET or C#.NET languages, which are
compiled with MODSIM through the Microsoft.NET framework.
Users are provided access to all key variables and object classes
inMODSIM, thereby allowing customization for any complex river
basin operational and modeling constructs without the need for
reprogramming and recompiling of the MODSIM source code
(Labadie 2010).

MODSIM was not provided with automatic calibration/
parameter estimation capabilities. In the present study, through the
use of the customization feature ofMODSIM and coding the GA in
a custom run environment of the model, a calibration capability is
added to MODSIM and estimation of return-flow parameters are
made possible.

Fig. 1. Relation between water withdrawal, water consumption, and return water (schematic)

MODEL ( )

Optimization
Procedure

Prior 
Info

Real World

+
-

Yt

t

Measured 
Inputs

Measured 
Outputs

Computed 
Outputs

Fig. 2. Concept of calibration model as an optimization issue (rep-
rinted from Hydrological Modelling and the Water Cycle, “General
Review of Rainfall-Runoff Modeling: Model Calibration, Data Assim-
ilation, and Uncertainty Analysis,” 2008, pp. 1–24, Hamid Moradkhani
and Soroosh Sorooshian, © Springer Science+Business Media B. V.
2009, with permission of Springer)
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Calibration Components

Automatic calibration of parameters in a model is based on three
main components: the type of optimization algorithm, the objec-
tive function, and convergence criteria. GAs have been the most
commonly applied type of evolutionary algorithm (EA) within
water resource planning and management (Nicklow et al. 2010).
The present study utilized a GA as the optimization algorithm.
A GA is an EA that works with selection, crossover, and mutation
operators (Gen and Cheng 2000). Briefly, a GA commences with a
population of random feasible solutions (chromosomes), and then
the value of the objective function or other performance function
(usually called the fitness function) is computed for these solutions,
then, using crossover and mutation and random selection (such as
roulette wheel selection), a new population is generated based on
the chance (probability) of new or previous chromosomes. There
are two common types of chromosomes or strings in GAs, binary
(0,1) and real coded strings. In this research, a real coded type was
employed.

The values of GA parameters/operators are usually obtained by
sensitivity analysis, i.e., several values for parameters are consid-
ered, and the model convergence and running time recorded in each
model run. In this problem (presented as follows), the final values
of the GA parameters were also obtained by sensitivity analysis and
are summarized in Table 1. The final mutation rate (0.6) in propor-
tion to other studies is a high value and prevents the algorithm from
stopping at the local optimum points. The selection rate is also
relatively high, as shown in Table 1. A high selection rate value
results in the consideration of a large percentage of the previous
search space (previous generation) by the GA (Razali and Geraghty
2011). The maximum number of iterations by the GAwas obtained
as 200. Also, no change in the objective function after 20 iterations
stopped the algorithm after the 120th iteration. This is another cri-
terion for algorithm stopping.

The most common objective function in the automatic cali-
bration of models is the root-mean-square error (RMSE) between
observed and simulated values [Eq. (1)]. Gosain et al. (2005) only
considered the RMSE of surface flow discharge in the assessment
of irrigation return flow. This research aimed to minimize the three
different combinations of surface-flow RMSE and groundwater-
level RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðxio − xisÞ2
s

ð1Þ

where n = number of periods; xio = observed value in period I; and
xis = simulated value in period i.

Study Area, Modeling Assumptions

The Shian Basin, which is one of the subbasins of the Karkheh
River in western Iran, serves as a case study for this research. Fig. 4
shows the location of the Shian Basin. The area of the basin is ap-
proximately 689 km2. The population of the study area was 21,659
people in 2006. Also, the mean annual precipitation in the area is
around 460 mm. The mean annual levels of agriculture, urban/
domestic, and industrial demand for Shian Basin water are 45.8,
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Fig. 3. Illustration of MODSIM network structure with artificial nodes and links (reprinted from Labadie 2010, with permission from John Labadie)

Table 1. Genetic Algorithm Parameters and Operators

Parameter/operator name Value/type

Maximum number of generations 200
Mutation rate 0.6
Selection rate 0.7
Population size 100
Type of coupling operator Two pointed
Type of selection operator Roulette wheel
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0.66, and 0.05 MCM, repectively. The area of cultivated lands (rain
fed and irrigated) is approximately 20,000 ha and irrigates from
surface water (53%) and groundwater (47%) resources (Iran
Ministry of Energy 2010). The simulation was conducted for the
period September 1991 to September 2000. While the time step of
the simulation was 1 month, in the estimation of the lag time of the
return flows, it was assumed that the return waters reached surface
water and groundwater resources in the same period. Fig. 5 shows
the relation between flows and demands, which is a basis for mod-
eling the Shian River Basin.

Fig. 6 shows the Shian Basin model inMODSIM. In this figure,
environmental, domestic, industrial, and agricultural demands are
modeled based on the fact that the environmental demand has the
highest priority and agriculture demand the lowest. According to
Fig. 1, if X is the percentage of return flow (RF) that joins the sur-
facewater (RFS: return flow reaching the surface flow), then 100−X
percent of the return flow infiltrates into the groundwater (RFG:

return flow infiltrating to groundwater) (obviously, RF ¼ RFSþ
RFG). Therefore, for each level of demand, two parameters must be
calibrated-RFF (return flow fraction) and RFFS (RFF that reaches
the surface flow), and consequently, for three users, six parameters
are needed. It should be noted that losses, such as from evaporation,
were treated as part of the water consumption (based on Fig. 1).

In the modeling of groundwater flow, aquifers are modeled
as reservoirs (i.e., lumped). In this regard, the safe yield (useful
volume) of an aquifer equals the capacity of the reservoir. Since
MODSIM does not allow for modeling precipitation, the flows of
rivers and aquifer recharge were entered into the model as time
series. The amount of drained flows and evaporation were also
modeled as consumption demands. In addition, the only parameters
affecting the output for calibration was the return-flow fraction; this
means that no other parameters affected the model outputs. The
mean values of the inflows and demands in the basin are presented
in Table 2.

Fig. 4. Geographical location of Shian basin
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Fig. 5. Schematic of flow and water demands in basin
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Calibration Procedure

As shown in Fig. 7, in running the simulation model of the Shian
Basin, the return-flow fractions were calibrated by coding the GA
in MODSIM. As presented in the flowchart, in each iteration of the
GA,MODSIM is run as population size and the return-flow fraction

equals the values obtained from the previous iteration in the GA;
this cycle continues until convergence occurs in the GA, which
results in a minimum RMSE between the simulated and observed
values. Simulated data are MODSIM outputs (including surface
flow and groundwater level) for each series of return-flow fractions
(chromosomes of the GA).

Fig. 6. Shian Basin modeling in MODSIM

Table 2. Mean Monthly Flow and Water Demand of Shian Basin (Thousands of Cubic Meters)

Month October November December January February March April May June July August September

Basin inflow 1,375 1,310 2,167 1,880 2,824 6,919 10,490 8,755 6,779 4,845 3,428 2,304
Agricultural demand 1,755 706 165 45 35 1,576 5,242 7,542 10,548 8,151 6,144 3,991
domestic water demand 60 52 41 38 43 47 54 65 80 89 94 75
Aquifer inflow 337 272 418 350 445 974 1,840 1,618 1,399 1,015 752 522
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Fig. 7. Diagram of automatic calibration of return-flow fractions
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MODSIM should be runed to the count of GA iterations in its
population. In each calibration, assuming an average population
of 100, and 120 iterations, MODSIM was run 12,000 times, and
the process requires about 12–17 h on a personal computer.
There are six variables in the basin with three demand nodes:
coefficients of return flow from the three nodes of domestic
(RFFd: domestic return-flow fraction), industrial (RFFi: industrial
return-flow fraction), and agricultural (RFFa: agriculture return-
flow fraction) and also a ratio of the return flow from these
nodes into the surface water [respectively RFFSd (fraction of
RFFd reaching the surface flow), RFFSi (fraction of RFFi reach-
ing the surface flow), and RFFSa (fraction of RFFa reaching the
surface flow)]. These ratios in the GA equals the number of genes
per population member. The range of variables is selected between
0 and 1.

Calibration was done for three different combinations of objec-
tive function: calibration by RMSE of surface flow, calibration by
RMSE of groundwater level, and calibration by RMSE of surface
flow and groundwater level. The objective functions for calibration
are as follows.

First, the objective function includes only that of surface-flow
RMSE:

min

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðQi
o −Qi

sÞ
2

s �
ð2Þ

Second, the objective function includes only the groundwater-
level RMSE:

min

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼

ðHi
o −Hi

sÞ2
s #

ð3Þ

Third, the objective function includes both surface-flow RMSE
and groundwater-level RMSE:

min

"
w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðQi
o −Qi

sÞ2
s

þ w2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðHi
o −Hi

sÞ2
s #

ð4Þ

In these objective functions, n = number of time periods; Qi
o =

observed flow in time period i (L3=T); Qi
s = simulated discharge

in time period i (L3=T); Hi
o = observed groundwater level in time

period i (L); Hi
s = simulated groundwater level in time period i (L);

and w1 (T=L3) and w2 (1=L) = weighting parameters for integrat-
ing discharge and groundwater-level values into one equation.
The purpose of considering these three different cases for the
objective functions is to determine the best case for the calibration,
to determine the sensitivity of the model and objective function
to the return-flow fractions, and, finally, to determine the effects
of changing the surface flow and groundwater level in these
fractions.

The difference in the dimensions in the RMSE of the surface
flow (1,000 m3=month) from the RMSE of the groundwater
table (m) resulted in the selection of the dimension of w1 and w2,
giving rise to a dimensionless objective function. The values of w2

were computed by trial and error for four values: 1, 10, 100, and
1,000. A greater value of the RMSE of surface flow than the RMSE
of groundwater level resulted in the consideration of 1 as w1, while
only w2 was estimated by trial and error.

In the third case of calibration, two parts of the RMSE (RMSE
of surface flows and RMSE of groundwater level) were integrated
via the coefficients of w1 and w2. Since the absolute values of sur-
face flow were much larger than the groundwater level, the RMSE

value of the surface flow was estimated to be more than the RMSE
value of the groundwater level in the objective function. In consid-
ering values of w1 and w2 equal to 1, the GA reduces the final value
of the objective function through various iterations. However, if the
groundwater-level RMSE increases, it has no effect on the trend
of the total value of the objective function in the GA’s different
iterations because of its absolute low value. Increasing the value of
the groundwater-level RMSE causes an improper calibration of
the groundwater hydrograph. To overcome this problem, the RMSE
term of the surface flow and groundwater level needs to be bal-
anced in the objective function. In this study, as mentioned earlier,
w2 was calculated, by trial and error, to be 100, and, because of the
large amount of surface flow in proportion to the groundwater-level
values, the value of w1 was selected as 1.

Results

The obtained values of return-flow fractions and the share of sur-
face water and groundwater of return flows are presented in Table 3.
As shown in this table, in the first and third cases of the objective
function, the domestic return-flow fraction showed better values in
comparison to those in other studies, e.g., Simons et al. (2015),
Perry (2007), and Shiklomanov (2000). In two cases of calibration,
the return-flow fraction of domestic demand was obtained as
52.4%. The return-flow fraction of industrial demand varied in the
third case from the first and two other cases; in this regard, it could
be asserted that the third case demonstrated a reasonable value.
For irrigation, the return-flow fraction was equal to 17.5% and was
similar to the recommended (Shiklomanov 2000; Simons et al.
2015) and assumed values (Alimohammadi et al. 2009; Qureshi
et al. 2010; Liu et al. 2010).

Figs. 8 and 9 present the hydrographs of the surface flow and
groundwater level before and after calibration for different formu-
lations of the calibration function. Since the weighting coefficient
was different, it was not necessary to compare the final values of the
objective functions to evaluate these three conditions. The scatter
plots of the data are provided in Figs. 10 and 11. “First,” “second,”
and “third” in these figures refer to different calibration functions.
The R2 performance criterion is also shown in these figures. The
value of R2 in the third case is higher than in the other cases, and in
the first case the R2 value is zero. The results of the first and third
cases demonstrated that the model’s sensitivity was greater than the
aquifer’s hydrograph because the values of the aquifer level were
less than the values of the surface flow and the variation in the
groundwater level was more sensible to the return flow in the
model. This result can be derived from Fig. 3 and Table 3 by com-
paring RFFGs (fraction of RFF infiltrating into groundwater) for
three demand nodes. Ignoring the groundwater term from the

Table 3. Estimated Return-Flow Fractions in Three States of Calibration

Fraction

Value of fractions (%)

First condition Second condition Third condition

RFFd 92.1 52.4 87.3
RFFi 31.7 23.8 75.7
RFFa 87.3 82.5 17.5
RFFSd [RFFGd]

a 69.8 [30.2] 98.4 [1.6] 73 [27]
RFFSi [RFFGi]

b 33.3 [66.7] 95.2 [4.8] 17.5 [82.5]
RFFSa [RFFGa]

c 0 [100] 41.3 [58.7] 22.2 [77.8]
aFraction of RFFd that infiltrates to groundwater.
bFraction of RFFi that infiltrates to groundwater.
cFraction of RFFa that infiltrates to groundwater.

© ASCE 05016002-6 J. Irrig. Drain Eng.

 J. Irrig. Drain Eng., 05016002 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

E
L

Y
A

C
H

A
R

 C
E

N
T

R
A

L
 L

IB
R

A
R

Y
 o

n 
05

/1
0/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

 

 



calibration (first case of calibration) resulted in unsatisfactory val-
ues of R2 and return-flow fractions (Table 3). This resulted from
the second and third cases, which were related to the volume of
groundwater in proportion to surface water in the Shian Basin.

Summary and Conclusions

Assessment of return flows is one of the most sophisticated and
important components of water resource planning in a river basin.

S
ep

te
m

be
r 

19
91

25.0

20.0

15.0

10.0

5.0

0.0

A
pr

il 
19

92

A
pr

il 
19

93

A
pr

il 
19

94

A
pr

il 
19

95

A
pr

il 
19

96

A
pr

il 
19

97

S
ep

te
m

be
r 

19
97

S
ep

te
m

be
r 

20
00

A
pr

il 
19

98

A
pr

il 
19

99

A
pr

il 
20

00

O
ct

ob
er

 1
99

9

O
ct

ob
er

 1
99

6

O
ct

ob
er

 1
99

8

O
ct

ob
er

 1
99

2

O
ct

ob
er

 1
99

3

O
ct

ob
er

 1
99

4

O
ct

ob
er

 1
99

5

Fig. 8. Observed and simulated outflow hydrographs
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Fig. 9. Observed and simulated groundwater-level hydrographs
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The purpose of this study was to estimate the return-flow fractions
of demand from different sectors of society by the calibration of the
MODSIM simulation model. Three objective functions were con-
sidered for model calibration: surface water flow RMSE, ground-
water table RMSE, and a combination of both. A GA was used as
an optimization model solver. The calibration results for the second
and third cases were very close. In the first case, where the RMSE
value of the surface water flow was used for the optimization of the
parameters of the objective function, the groundwater hydrograph
was not well calibrated, and the GA performance was inferior.
Furthermore, the contribution of the surface water from the return
flow was zero (an illogical value).

The difference between observed and simulated surface flow
hydrographs was negligible in the three cases. The fluctuation of
the simulated groundwater hydrograph was related to the type of
modeling in all cases; it was assumed that the aquifer had a specific
heterogeneous medium, which contradicted reality. This limitation
was specific not only to MODSIM but also for many river basin
management models. The fluctuation of the simulated hydrograph
resulted in a decrease in the correlation coefficient (Fig. 11).

In a basin having a high potential of runoff, the objective func-
tion was more sensitive to the groundwater-level RMSE because
the effects of the return flow on the surface outflow were negligible.
It is impossible to make a general remark because the values of the
various demands were significant. The coefficients varied for differ-
ent basins in different locations and climates (Shiklomanov 2000;
Gassert et al. 2013), and the best method of estimating these coef-
ficients is the calibration of the related models.

The values of the return flow in different basins differed from
each other based on the climate, vegetation, location of different
needs, consumption patterns, and the geology of the basin. In this
study, the coefficients of the return flow of three types of demand,
for domestic, industrial, and agricultural water, were approximately
87, 76, and 18% (rounded values). Return-flow fractions (return
water divided by water withdrawal) depended on the nature of the
user (Simons et al. 2015). The most typical values for agriculture
(irrigation) return flow were between 30 and 70% (Simons et al.
2015), and the industrial return-flow fraction was usually insignifi-
cant. However, it varied greatly depending on the type of industry,
the nature of the water supply, the technological process, and
climatic conditions, reaching 30–40% in some industries, while in

most industries it was 5–20% (Shiklomanov 2000). Perry (2007)
stated that the domestic return-flow fraction was 95%. The domes-
tic return-flow fraction for modern and large cities ranged from 90
to 95% and for small cities from 40 to 60% (Shiklomanov 2000).

The most thorough calibration case was the third one, and it was
recommended that it be used for other basins. Since the return flow
was dependent on many aspects, for example soil characteristics
and method of irrigation, it was not appropriate to set down a rule-
of-thumb value on such quantities. Through modeling, the return
flow was assessed and validated (Gosain et al. 2005). It was not
possible to systematically measure and compare withdrawals and
return flows anywhere in the region in order to calibrate the esti-
mates used. It was also concluded that the portion of surface water
and groundwater of the total water resources in a river basin was
significant in estimating return-flow fractions. It should be men-
tioned that, apart from the amount (the goal of this study), the qual-
ity, reuse, economics, return location, and lag time of the returning
flow were also important factors that should be the subject of future
and separate studies. The use of Pareto optimal solutions (Caramia
and Dell’Olmo 2008; Confesor and Whittaker 2007), instead of
weighting coefficients [w1 and w2 in Eq. (4)], is another way to
find the optimal solutions of a multiobjective optimization problem
[Eq. (4)].

This paper offers a new and innovative approach—the calibra-
tion of water resource planning models—to estimating return-flow
fractions, which are important and complicated components of river
basins, for all users.

Notation

The following symbols are used in this paper:
Hi

o = observed groundwater level at time step i (L);
Hi

s = simulated groundwater level at time step i (L);
n = number of time periods;

Qi
o = observed discharge at time step i (L3=T);

Qi
s = simulated discharge at time step i (L3=T);

W1 = discharge weight coefficient (T=L3);
W2 = groundwater weight coefficient (1=T);
xio = observed value in period i; and
xis = simulated value in period i.

Fig. 10. Scatter plot of surface flow Fig. 11. Scatter plot of groundwater level
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